LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS
 THIRD SEMESTER - NOVEMBER 2009
 MT 3810 / 3803 / 3800 - TOPOLOGY

Date \& Time: 03/11/2009 / 9:00-12:00
Dept. No.
Max. : 100 Marks

1) a) i) Let X be a metric space with metric d. Show that $d_{1}(x, y)$ defined by $d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}$, is also a metric on X .

OR
ii) Let $\mathrm{C}(\mathrm{X}, \mathrm{i})$ be the set of all bounded continuous real functions defined on the metric space X and B be the set of all bounded real functions defined on X. Prove that $\mathrm{C}(\mathrm{X}, \mathfrak{i})$ is a closed subset of the metric space B.
b) i) Let X be a metric space. Prove that any arbitrary union of open sets in X is open and any finite intersection of open sets in X is open.
ii) Give an example to show that any arbitrary intersection of open sets in X is not open.
iii) In any metric space X, show that a subset F of X is closed \Leftrightarrow its complement F^{\prime} is open.
(6+3+6)
OR
iv) Let X be a complete metric space, and let Y be a subspace of X. Show that Y is complete \Leftrightarrow it is closed.
v) Let X be a complete metric space, and let $\left\{F_{n}\right\}$ be a decreasing sequence of nonempty closed subsets of X such that $d\left(F_{n}\right) \rightarrow 0$. Prove that $F=\bigcap_{n=1}^{\infty} F_{n}$ contains exactly one point.
vi) State and prove Baire's Theorem.
2) a) i) Prove that every separable metric space is second countable.

OR

ii) Let X be any non-empty set, and let S be an arbitrary class of subsets of X. Prove that the class of all unions of finite intersection of sets in S is a topology.
b) i) Show that any closed subspace of a compact space is compact.
ii) Give an example to show that a proper subspace of a compact space need not be closed.
iii) Prove that any continuous image of a compact space is compact.
iv) Let $C(X, i)$ be the set of all bounded continuous real functions defined on a topological space X. Show that $C(X, \mathfrak{i})$ is a real Banach space with respect to pointuise addition and scalar multiplication and the norm defined by $\|f\|=\sup |f(x)|$; (2) if multiplication is defined pointuise, $C\left(X,_{i}\right)$ is a commutative real algebra with identity in which $\|f g\| \leq\|f\|\|g\|$ and $\|1\|=1$.
3) a) i) Prove that a metric space is sequentially compact \Leftrightarrow it has the Bolzano Weierstrass property.

OR

ii) Show that a closed subspace of a complete metric space is compact \Leftrightarrow it is totally bounded.
b) i) State and prove Lebesque's covering Lemma.
ii) Show that every sequentially compact metric space is compact.

OR

iii) Prove that the product of any non-empty class of compact spaces is compact.
iv) Show that any continuous mapping of a compact metric space into a compact metric space is uniformly continuous.
4) a) i) Prove that every compact Hausdorff space is normal.

OR

ii) In a Hausdorff space, show that any point and disjoint compact subspace can be separated by open sets.
b) i) State and prove the Tietze Extension Theorem.

OR
ii) If X is a second countable normal space, show that there exists a homeomorphism f of X onto a subspace of i^{*}, and X is therefore metrizelle.
5) a) i) Show that any continuous image of a connected space is connected.

OR

ii) Let X be a compact Hausdorff space. Show that X is totally disconnected \Leftrightarrow it has an open base whose sets are also closed.
b) i) Let X be a topological space and A be a connected subspace of X. If B is a subspace of X such that $A \subseteq B \subseteq \overline{\mathrm{~A}}$, then show that B is connected.
ii) If X is an arbitrary topological space, then prove the following:

1) each point in X is contained in exactly one component of X;
2) each connected subspace of X is contained in a component of X;
3) a connected subspace of X which is both open and closed is a component of X.
$(3+12)$

OR

iii) Let f be a continuous real function defined on a closed interval [a,b], and let $\in>0$ be given. Prove that there exists a polynomial p with real coefficients such that $|f(x)-p(x)|<\in$ for all x in $[a, b]$

